

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 672–674

A proline-catalyzed aldol approach to the synthesis of 1-N-iminosugars of the D-glucuronic acid type

Chen Chen, Biao Yu *

State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Received 20 October 2007; revised 19 November 2007; accepted 21 November 2007

Abstract

A new synthetic route to 1-N-iminosugars of glucuronic acid type (e.g., 1) has been developed employing proline-catalyzed aldol reaction as a key step.

 $© 2007 Elsevier Ltd. All rights reserved.$

Keywords: 1-N-Iminosugar; Aldol reaction; Proline-catalyzed; Glucuronidase inhibitor; Synthesis

1-N-Iminosugars, saccharide analogs with a nitrogen in place of the anomeric carbon, have been disclosed as potent inhibitors of β -glycosidases, due to their good mimicry of the transition state involving in equatorial glycoside cleavage.^{[1–4](#page-2-0)} Thus, the p-glucuronic acid (GlcA)-type 1-Niminosugar (1) is found to be a potent and specific inhibitor of β -D-glucuronidase from bovine liver $(K_i = 79 \text{ nM})^2$ $(K_i = 79 \text{ nM})^2$. Incorporation of this GlcA mimic into the reducing end of a heparan sulfate (HS) oligosaccharide could provide a potent and specific inhibitor of heparanase, 5 the unique mammalian endo-β-D-glucuronidase, which has become a promising target of anticancer therapy.[6](#page-2-0) To this end, we first required a properly protected derivative of the 1-Niminosugar 1 (e.g., 2, with only the 4-OH free). Concise approaches to the synthesis of compound 1 have been reported by Ichikawa and co-workers^{2c} and Ganem and co-workers;[3](#page-2-0) and a number of synthetic approaches toward the analogous 1-N-iminosugars are available in the literatures;⁴ however, modification of these methods to the synthesis of compound 2 requires lengthy transformations. Herein, we report a new and concise approach to the synthesis of 1-N-iminosugars, as exemplified by the synthesis

0040-4039/\$ - see front matter © 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2007.11.153

of compounds 1 and 2, using proline-catalyzed aldol reaction as a key step.

Organocatalyzed enantioselective aldol reaction has recently been an intensive research topic, which provides a biomimetic approach to the synthesis of saccharides.^{[7](#page-2-0)} Applying this new technology to the preparation of 1-Niminosugars (e.g., 1 and 2) would require the aldol coupling of a b-amino-aldehyde and a glyceric aldehyde (e.g., 3 and 4, for the preparation of the GlcA-type 1 and 2). Thus, direct cross aldol condensation of aldehydes 3^8 3^8 and 4^9 4^9 was examined in the presence of proline [\(Scheme 1](#page-1-0)). The use of 0.1 equiv of proline in DMF at room temperature gave the best results [\(Table 1](#page-1-0), entry 2): the mechanistically expected anti-product 5 was predominately formed in a 6:1 ratio to a stereoisomer (6) in a total yield of 48%. Oxidation of the unstable aldols 5 and 6 with sodium chlorite followed by benzyl ester formation provided esters 7 and 8, which were separated by careful chromatography on silica gel. However, the exact stereochemistry in these products was not determined at this stage.

Corresponding author. Tel.: +86 21 54925131; fax: +86 21 64166128. E-mail address: byu@mail.sioc.ac.cn (B. Yu).

Table 1 Proline-catalyzed aldol reaction of aldehydes 3 and 4^a

Entry	Solvent	Catalyst loading (equiv)	Profine-catalyzed aldol reaction of aldenydes 3 and 4 Temperature	Yield $(\%)$	5/6
$\mathbf{1}$	DMF	0.05	rt	$<$ 20	
2	DMF	0.1	rt	48	6/1
3	DMF	0.3	rt	31	1/1
$\overline{4}$	DMF	0.1	0° C	$<$ 20	3/1
5	DMSO	0.1	rt	45	5/1

^a For a typical operation: A solution of 3-benzyloxycarbonylaminopropanal 3 (145 mg, 0.700 mmol) in DMF (1.5 mL) was added slowly over a course of 24 h to a stirring suspension of 2-O-benzyl-3-O-tert-butyldimethylsilyl-D-glyceraldehyde 4 (296 mg, 1.00 mmol) and L-proline (9 mg, 0.08 mmol) in DMF (1.5 mL) at room temperature. The mixture was stirred for an additional 2 h at room temperature, and then was concentrated in vacuo. Flash chromatography (4:1 hexanes–ethyl acetate) afforded a 6:1 mixture of diastereoisomers 5 and 6 as a colorless oil (167 mg, 48%).

Conversion of compound 7 into the desired 1-N-iminosugars 1 and 2 was achieved concisely as shown in Scheme 2. Thus, the free hydroxyl group in 7 was protected with an easily removable chloroacetyl (CA) group, providing 9 in high yield. Attempts to remove the primary TBS ether in 9 with tetrabutyl ammonium fluoride (TBAF)/acetic acid or hydrogen fluoride–pyridine complex led to the formation of the 1,5-lactone and migration of the CA group. Hydrofluoric acid was found effective to cleave the TBS group cleanly. The resulting alcohol 10 was then subjected to Swern oxidation; automatic intramolecular aminal formation afforded the piperidine derivative 11. This epimeric mixture was then subjected to reduction with triethylsilane/boron trifluoride diethyl etherate to provide the fully protected 1-N-iminosugar derivative 12 in good yield (71% for three steps). Finally, the CA group in 12 was selectively deprotected with thiourea/2,6-lutidine, providing the desired 2 in an excellent 95% yield. It should be noted that the removal of an acetyl group at this stage was found problematic under either acidic or basic conditions, leading to the corresponding 4,5-elimination product. Further removal of the benzyl and Cbz protection with Pd/C catalyzed hydrogenation afforded the known 1-N-iminosugar 1. The analytical data of 1 are identical to those reported, 2c thus confirming the proposed stereochemistry in the major aldol product 5.

The stereochemistry of the minor aldol product 6 was implied by NOE analysis of its lactone derivative 13 (Scheme 3). 10

In summary, the GlcA-type 1-N-iminosugar derivatives (e.g., 1 and 2) were concisely synthesized from the aldol adduct (e.g., 5) in high yields, demonstrating a new route

Scheme 2. Reagents and conditions: (a) Chloroacetic anhydride, pyridine, DMAP, CH₂Cl₂, 91%; (b) HF (40%), CH₃CN; (c) (COCl)₂, DMSO, -65° C, CH₂Cl₂; (d) triethylsilane, BF₃·Et₂O, CH₂Cl₂, 71% (3 steps); (e) thiourea, 2,6-lutidine, MeOH, 95%; (f) H₂, Pd/C (10%), MeOH; then HCl (1 N), 90%.

to the synthesis of 1-N-iminosugars of biological significance. There is certainly room for improvement in the proline-catalyzed aldol coupling with aldehydes 3 and 4 and the likes as partners, that has not been examined before. Incorporation of the present GlcA-type 1-N-iminosugar into the reducing end of heparan sulfate (HS) oligosaccharides and the test of their heparanase inhibitions are our current projects and will be reported in due course.

Acknowledgements

Financial support from the National Natural Science Foundation of China (20572122 and 20621062) and the Committee of Science and Technology of Shanghai (06XD14026 and 04DZ19213) is gratefully acknowledged.

References and notes

- 1. (a) Jesperson, T. M.; Dong, W.; Sierks, M. R.; Skrydstrup, T.; Lundt, I.; Bols, M. Angew. Chem., Int. Ed. Engl. 1994, 33, 1778–1779; (b) Bols, M. Acc. Chem. Res. 1998, 31, 1–8; (c) Liu, H.; Liang, X.; Søhoel, H.; Bülow, A.; Bols, M. J. Am. Chem. Soc. 2001, 123, 5116-5117.
- 2. (a) Igarashi, Y.; Ichikawa, M.; Ichikawa, Y. Tetrahedron Lett. 1996, 37, 2707–2708; (b) Ichikawa, Y.; Igarashi, Y.; Ichikawa, M.; Suhara, Y. J. Am. Chem. Soc. 1998, 120, 3007–3018; (c) Kim, Y. J.; Ichikawa, M.; Ichikawa, Y. J. Org. Chem. 2000, 65, 2599–2602.
- 3. Zhao, G.; Deo, U. C.; Ganem, B. Org. Lett. 2001, 3, 201–203.
- 4. For selected approaches to the synthesis of 1-N-iminosugars, see: (a) Nishimura, Y.; Satoh, T.; Adachi, H.; Kondo, S.; Takeuchi, T.; Azetaka, M.; Fukuyasu, H.; Iizuka, Y. J. Am. Chem. Soc. 1996, 118, 3051–3052; (b) Nishimura, Y.; Shitara, E.; Adachi, H.; Toyoshima, M.; Nakajima, M.; Okami, Y.; Takeuchi, T. J. Org. Chem. 2000, 65, 2–11; (c) Pandey, G.; Kapur, M. Org. Lett. 2002, 4, 3883–3886; (d) Xie, J.; Guveli, T.; Hebbe, S.; Dechoux, L. Tetrahedron Lett. 2004, 45, 4903–4906.
- 5. For a review on the azasugars and azasugar-containing oligosaccharides, see: Asano, N.; Hashimoto, H. In Glycoscience: Chemistry and Chemical Biology; Fraser-Reid, B., Tatsuta, K., Thiem, J., Eds.; Springer, 2001; pp 2541–2594.
- 6. For a recent review on the heparanase inhibitors, see: Miao, H.-Q.; Liu, H.; Navarro, E.; Kussie, P.; Zhu, Z. Curr. Med. Chem. 2006, 13, 2101–2111.
- 7. For the proline-catalyzed direct cross aldol coupling of aldehydes for the synthesis of carbohydrates, see: (a) Northrup, A. B.; MacMillan, D. W. C. Science 2004, 305, 1752–1755; (b) Casas, J.; Engqvist, M.; Ibrahem, I.; Kaynak, B.; Córdova, A. Angew. Chem., Int. Ed. 2005, 44, 1343-1345; (c) Reyes, E.; Córdova, A. Tetrahedron Lett. 2005, 46, 6605-6609; (d) Córdova, A.; Ibrahem, I.; Casas, J.; Sundén, H.; Engqvist, M.; Reyes, E. Chem. Eur. J. 2005, 11, 4772–4784; (e)

Córdova, A.; Engqvist, M.; Ibrahem, I.; Casas, J.; Sundén, H. Chem. Commun. 2005, 2047-2049; (f) Zhao, G. L.; Liao, W. W.; Córdova, A. Tetrahedron Lett. 2006, 47, 4929–4932.

- 8. Geall, A. J.; Blagbrough, I. S. Tetrahedron 2000, 56, 2449–2460.
- 9. (a) Baggett, N.; Stribblehill, P. J. Chem. Soc., Perkin Trans. 1 1977, 1123–1126; (b) Reetz, M. T.; Kesseler, K. J. Org. Chem. 1985, 50, 5434–5436; (c) Morimoto, Y.; Mikami, A.; Kuwabe, S.; Shirahama, H. Tetrahedron: Asymmetry 1996, 7, 3371–3390.
- 10. Selected data for the key compounds. Compound 1: ¹H NMR (D₂O, 300 MHz): δ 2.79 (ddd, $J = 4.2, 7.4, 7.8$ Hz, 1H), 2.96 (dd, $J = 7.5$, 12.9 Hz, 1H), 3.26 (dd, $J = 7.8$, 13.2 Hz, 1H), 3.36 (dd, $J = 3.9$, 12.9 Hz, 1H), 3.40 (dd, $J = 5.1$, 13.2 Hz, 1H), 3.78 (dt, $J = 3.3$, 7.5 Hz, 1H), 3.96 (t, $J = 6.9$ Hz, 1H). Compound 2: $[\alpha]_D^{23}$ -18.8 (c 1.0, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 2.55-2.67 (m, 1H), 2.64 (t, $J = 11.7$ Hz, 1H), 2.76–3.03 (br m, 2H), 3.21–3.39 (br m, 1H), 3.91 (t, $J = 9.3$ Hz, 1H), 4.21–4.55 (br m, 2H), 4.56–4.77 (m, 2H), 5.11 (s, 2H), 5.16 (s, 2H), 7.20–7.43 (m, 15H); ¹³C NMR (CDCl₃, 75 MHz): δ 44.07, 45.39 (br), 47.99 (br), 66.71, 67.47, 72.27 (br), 73.57 (br), 77.69, 127.70, 127.84, 127.85, 127.94, 128.08, 128.19, 128.41, 128.44, 128.45, 135.27, 136.14, 137.69, 154.72, 170.85; ESIMS m/z 476.1 [M+H]⁺, 498.0 $[M+Na^{\dagger}$; Anal. Calcd for C₂₈H₂₉NO₆: C, 70.72; H, 6.15; N, 2.95. Found: C, 70.79; H, 6.12; N, 2.77. Compound 7: $[\alpha]_D^{23}$ -19.2 (c) 0.98, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 0.045 (s, 3H), 0.048 (s, 3H), 0.88 (s, 9H), 2.92–2.98 (m, 1H), 2.97 (d, $J = 7.8$ Hz, 1H), 3.48 (t, $J = 6.1$ Hz, 2H), 3.52–3.58 (m, 1H), 3.73–3.86 (m, 2H), 3.90–3.97 (m, 1H), 4.50 (d, $J = 11.4$ Hz, 1H), 4.73 (d, $J = 11.4$ Hz, 1H), 4.93 (d, $J = 12.0$ Hz, 1H), 5.02 (d, $J = 12.0$ Hz, 1H), 5.06 (s, 2H), 5.07 (br s, 1H), 7.20-7.39 (m, 15H); ¹³C NMR (CDCl₃, 75 MHz): δ -5.57, -5.55, 18.13, 25.80, 40.66, 48.38, 62.10, 66.50, 66.65, 70.48, 72.74, 79.77, 127.73, 127.95, 128.03, 128.06, 128.14, 128.18, 128.30, 128.33, 128.42, 128.44, 128.54, 128.57, 135.51, 136.34, 137.98, 156.21, 172.90; ESIMS m/z 608.3 [M+H]⁺, 630.3 [M+Na]⁺; Anal. Calcd for C34H45NO7Si: C, 67.19; H, 7.46; N, 2.30. Found: C, 67.46; H, 7.31; N, 2.42. Compound 8: $[\alpha]_D^{23}$ –20.2 (c 0.96, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): d 0.05 (s, 6H), 0.88 (s, 9H), 2.92–2.98 (m, 1H), 3.32 (d, J = 6.6 Hz, 1H), 3.44–3.49 (m, 1H), 3.56–3.72 (m, 2H), 3.76–3.87 (m, 2H), $4.03-4.09$ (m, 1H), 4.42 (d, $J = 11.4$ Hz, 1H), 4.62 (d, $J = 11.4$ Hz, 1H), 5.01 (s, 2H), 5.07 (s, 2H), 5.28 (br t, $J = 6.3$ Hz, 1H), 7.22-7.33 (m, 15H); ¹³C NMR (CDCl₃, 75 MHz): δ -5.60, -5.57, 18.09, 25.78, 39.85, 48.25, 62.65, 66.61, 66.77, 70.33, 72.85, 78.89, 127.72, 128.01, 128.05, 128.29, 128.33, 128.44, 128.52, 135.45, 136.34, 137.94, 156.68, 172.42; ESIMS m/z 608.4 [M+H]+, 630.3 $[M+Na]$ ⁺; Anal. Calcd for C₃₄H₄₅NO₇Si: C, 67.19; H, 7.46; N, 2.30. Found: C, 67.27; H, 7.43; N, 2.29. Compound 13: $[\alpha]_D^{23}$ -43.0 (c 1.07, CHCl₃); ¹H NMR (CDCl₃, 300 MHz): δ 2.56 (dt, $J = 11.1$, 3.0 Hz, 1H); 3.56 (ddd, $J = 15.0$, 4.8, 2.1 Hz, 1H), 3.78–3.89 (m, 2H), 3.92 (dd, $J = 8.1$, 3.6 Hz, 1H), 4.33 (d, $J = 3.6$ Hz, 2H), 4.63 (d, $J = 11.7$ Hz, 1H), 4.73 (d, $J = 11.7$ Hz, 1H), 4.72 (d, $J = 4.5$ Hz, 1H), 5.11 (AB, 2H), 5.48 (m, 1H), 7.26–7.38 (m, 10H); 13C NMR (CDCl3, 75 MHz): d 36.55, 47.66, 67.40, 68.40, 69.96, 71.46, 77.71, 127.79, 127.86, 128.00, 128.29, 128.44, 128.53, 135.83, 137.38, 158.43, 172.13; ESIMS m/z 408.2 [M+Na]⁺; ESIHRMS m/z calcd for $C_{21}H_{23}NO_6 [M+Na]^+$: 408.1418; found, 408.1431.